Responding to potential asteroid redirect mission targets

One year ago, on Feb. 15, 2013, the world was witness to the dangers presented by near-Earth Objects (NEOs) when a relatively small asteroid entered Earth’s atmosphere, exploding over Chelyabinsk, Russia, and releasing more energy than a large atomic bomb. Tracking near-Earth asteroids has been a significant endeavor for NASA and the broader astronomical community, which has discovered 10,713 known near-Earth objects to date. NASA is now pursuing new partnerships and collaborations in an Asteroid Grand Challenge to accelerate NASA’s existing planetary defense work, which will help find all asteroid threats to human population and know what to do about them. In parallel, NASA is developing an Asteroid Redirect Mission (ARM) — a first-ever mission to identify, capture and redirect an asteroid to a safe orbit of Earth’s moon for future exploration by astronauts in the 2020s.ARM will use capabilities in development, including the new Orion spacecraft and Space Launch System (SLS) rocket, and high-power Solar Electric Propulsion. All are critical components of deep-space exploration and essential to meet NASA’s goal of sending humans to Mars in the 2030s. The mission represents an unprecedented technological feat, raising the bar for human exploration and discovery, while helping protect our home planet and bringing us closer to a human mission to one of these intriguing objects.NASA is assessing two concepts to robotically capture and redirect an asteroid mass into a stable orbit around the moon. In the first proposed concept, NASA would capture and redirect an entire very small asteroid. In the alternative concept, NASA would retrieve a large, boulder-like mass from a larger asteroid and return it to this same lunar orbit. In both cases, astronauts aboard an Orion spacecraft would then study the redirected asteroid mass in the vicinity of the moon and bring back samples.Very few known near-Earth objects are ARM candidates. …

Read more

Compound discovered at sea shows potency against anthrax

July 17, 2013 — A team led by William Fenical at Scripps Institution of Oceanography at UC San Diego has discovered a new chemical compound from an ocean microbe in a preliminary research finding that could one day set the stage for new treatments for anthrax and other ailments such as methicillin-resistant Staphylococcus aureus (MRSA).As reported in the international edition of the German journal Angewandte Chemie, Scripps researcher Chris Kauffman in Fenical’s group first collected the microorganism that produces the compound in 2012 from sediments close to shore off Santa Barbara, Calif. Fenical’s team in the Scripps Center for Marine Biotechnology and Biomedicine, working in conjunction with San Diego-based Trius Therapeutics, used an analytical technique known as spectroscopy to decipher the unusual structure of a molecule from a microscopic species known as Streptomyces. Initial testing of the compound, which they named anthracimycin, revealed its potency as a killer of anthrax, the infectious disease often feared as a biological weapon, as well as MRSA.”The real importance of this work is the fact that anthracimycin has a new and unique chemical structure,” said Fenical, who added that the finding is a basic research discovery, which could lead to testing and development, and eventually a drug. “The discovery of truly new antibiotic compounds is quite rare. This discovery adds to many previous discoveries that show that marine bacteria are genetically and chemically unique.”The discovery provides the latest evidence that the oceans, and many of its unexplored regions, represent a vast resource for new materials that could one day treat a variety of diseases and illnesses. Fenical, a distinguished professor of oceanography and pharmaceutical science, helped found the field of marine biomedicine as a researcher at Scripps. He is a pioneer in discovering and identifying these novel compounds. His research has helped bring attention to the need for continued exploration of the ocean for science and society.In addition to Fenical and Kauffman, coauthors of the paper include Kyoung Jang, Sang-Jip Nam, Deanna Beatty, and Lauren Paul of Scripps and Jeff Locke of Trius Therapeutics.The National Institutes of Health and the Transformational Medical Technologies program of the Department of Defense Chemical and Biological Defense Program through the Defense Threat Reduction Agency supported the research.

Read more

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close