Flowing water on Mars appears likely but hard to prove: Studies examine puzzling summertime streaks

Martian experts have known since 2011 that mysterious, possibly water-related streaks appear and disappear on the planet’s surface. Georgia Institute of Technology Ph.D. candidate Lujendra Ojha discovered them while an undergraduate at the University of Arizona. These features were given the descriptive name of recurring slope lineae (RSL) because of their shape, annual reappearance and occurrence generally on steep slopes such as crater walls. Ojha has been taking a closer look at this phenomenon, searching for minerals that RSL might leave in their wake, to try to understand the nature of these features: water-related or not?Ojha and Georgia Tech Assistant Professor James Wray looked at 13 confirmed RSL sites using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) images. They didn’t find any spectral signature tied to water or salts. But they did find distinct and consistent spectral signatures of ferric and ferrous minerals at most of the sites. The minerals were more abundant or featured distinct grain sizes in RSL-related materials as compared to non-RSL slopes.”We still don’t have a smoking gun for existence of water in RSL, although we’re not sure how this process would take place without water,” said Ojha. “Just like the RSL themselves, the strength of the spectral signatures varies according to the seasons. The signatures are stronger when it’s warmer and less significant when it’s colder.”The research team also notes that the lack of water-related absorptions rules out hydrated salts as a spectrally dominant phase on RSL slopes. …

Read more

New explanation for odd double-layer Martian craters

Aug. 5, 2013 — Brown planetary geologists have an explanation for the formation of more than 600 “double-layer ejecta” (DLE) craters on Mars. The Martian surface was covered with a thick sheet of ice at impact. Ejected material would later slide down steep crater sides and across the ice, forming a second layer.Geologists from Brown University have developed a promising new explanation for a mysterious type of crater on the surface on Mars.Double-layered ejecta craters or DLEs, like other craters, are surrounded by debris excavated by an impactor. What makes DLEs different is that the debris forms two distinct layers — a large outer layer with a smaller inner layer sitting on top. These distinctive craters were first documented in data returned from the Viking missions to Mars in the 1970s, and scientists have been trying ever since to figure out how the double-layer pattern forms.A new study by Brown graduate student David Kutai Weiss and James W. Head, professor of geological science, suggests that DLEs are the result of impacts onto a surface that was covered by a layer of glacial ice tens of meters thick.”Recent discoveries by planetary geoscientists at Brown and elsewhere have shown that the climate of Mars has varied in the past,” Head said. “During these times, ice from the polar caps is redistributed into the mid-latitudes of Mars as a layer about 50 meters thick, in the same place that we see that the DLEs have formed. This made us think that this ice layer could be part of the explanation for the formation of the unusual DLE second layer,” Head said.In the scenario Weiss and Head lay out, the impact blasts through the ice layer, spitting rock and other ejecta out onto the surrounding ice. But because that ejected material sits on slippery ice, it doesn’t all stay put. …

Read more

Ten thousandth near-Earth object discovered in space

June 25, 2013 — More than 10,000 asteroids and comets that can pass near Earth have now been discovered. The 10,000th near-Earth object, asteroid 2013 MZ5, was first detected on the night of June 18, 2013, by the Pan-STARRS-1 telescope, located on the 10,000-foot (convert) summit of the Haleakala crater on Maui. Managed by the University of Hawaii, the PanSTARRS survey receives NASA funding.Ninety-eight percent of all near-Earth objects discovered were first detected by NASA-supported surveys.”Finding 10,000 near-Earth objects is a significant milestone,” said Lindley Johnson, program executive for NASA’s Near-Earth Object Observations Program at NASA Headquarters, Washington. “But there are at least 10 times that many more to be found before we can be assured we will have found any and all that could impact and do significant harm to the citizens of Earth.” During Johnson’s decade-long tenure, 76 percent of the NEO discoveries have been made.Near-Earth objects (NEOs) are asteroids and comets that can approach the Earth’s orbital distance to within about 28 million miles (45 million kilometers). They range in size from as small as a few feet to as large as 25 miles (41 kilometers) for the largest near-Earth asteroid, 1036 Ganymed.Asteroid 2013 MZ5 is approximately 1,000 feet (300 meters) across. Its orbit is well understood and will not approach close enough to Earth to be considered potentially hazardous.”The first near-Earth object was discovered in 1898,” said Don Yeomans, long-time manager of NASA’s Near-Earth Object Program Office at the Jet Propulsion Laboratory in Pasadena, Calif. “Over the next hundred years, only about 500 had been found. But then, with the advent of NASA’s NEO Observations program in 1998, we’ve been racking them up ever since. And with new, more capable systems coming on line, we are learning even more about where the NEOs are currently in our solar system, and where they will be in the future.”Of the 10,000 discoveries, roughly 10 percent are larger than six-tenths of a mile (one kilometer) in size — roughly the size that could produce global consequences should one impact the Earth. However, the NASA NEOO program has found that none of these larger NEOs currently pose an impact threat and probably only a few dozen more of these large NEOs remain undiscovered.The vast majority of NEOs are smaller than one kilometer, with the number of objects of a particular size increasing as their sizes decrease. …

Read more

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.