Microgravity research helping to understand the fungi within

Microgravity research helping to understand the fungi within

You may not recognize it by name, but if you have ever had a child with a diaper rash, that child was likely a host to Candida albicans (C. albicans). This unwelcome “guest” can be hard to control, as it can potentially lead to serious illness in humans with weakened immune systems. During an investigation dubbed “Microbe,” using the unique microgravity environment aboard space shuttle Atlantis on an International Space Station mission, researchers gained a better understanding of these prevalent fungi. Their tendency to become more aggressive in microgravity helps scientists see what mechanisms control the behavior of these types of organisms, with the potential to develop ways to influence their behavior both in space and on Earth.

via Top Health News — ScienceDaily:

You may not recognize it by name, but if you have ever had a child with a diaper rash, that child was likely a host to Candida albicans (C. albicans). This unwelcome “guest” can be hard to control, as it can potentially lead to serious illness in humans with weakened immune systems. During an investigation dubbed “Microbe,” using the unique microgravity environment aboard space shuttle Atlantis on an International Space Station mission, researchers at the Arizona State University (ASU) in Tempe gained a better understanding of these prevalent fungi. Their tendency to become more aggressive in microgravity helps scientists see what mechanisms control the behavior of these types of organisms, with the potential to develop ways to influence their behavior both in space and on Earth.Launched aboard NASA’s space shuttle Atlantis during the STS-115 mission in 2006, the ASU research team led by Cheryl Nickerson, Ph.D., furthered scientific knowledge by conducting the first global gene expression of a fungal pathogen during spaceflight. The team’s publication is entitled “Spaceflight Enhances Cell Aggregation and Random Budding in Candida albicans.” This research by the Center for Infectious Diseases and Vaccinology at ASU’s Biodesign Institute, in collaboration with other universities and NASA, was published in the online scientific journal PLOS ONE.”I am pleased that our team’s spaceflight research continues to provide compelling evidence of the value of the unique microgravity platform to unveil novel molecular and cellular responses in a variety of different human pathogens that are relevant to how they cause infection and disease in the body,” said Nickerson, professor of Life Sciences at the center at ASU and principal investigator of this study.C. albicans is found in most places where humans live, including the microgravity environment on the space station. A normal part of the microbial makeup in humans, C. albicans is found in 80 percent of the population, on the skin, in the oral cavity and in the gastrointestinal, urogenital and vaginal tracts.This was both the first global gene expression and the first phenotypic profiling of a fungal pathogen during spaceflight. Gene expression is the process in which genes form proteins to determine the function of a cell, much like marching orders for the cell’s role. …

For more info: Microgravity research helping to understand the fungi within

Top Health News — ScienceDaily

Microgravity research helping to understand the fungi within

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close