Dust in the wind drove iron fertilization during ice age

Dust in the wind drove iron fertilization during ice age

A longstanding hypothesis that wind-borne dust carried iron to the region of the globe north of Antarctica, driving plankton growth and eventually leading to the removal of carbon dioxide from the atmosphere has been confirmed by researchers. Plankton remove the greenhouse gas carbon dioxide (CO2) from the atmosphere during growth and transfer it to the deep ocean when their remains sink to the bottom.

via All Top News — ScienceDaily:

Researchers from Princeton University and the Swiss Federal Institute of Technology in Zurich have confirmed that during the last ice age iron fertilization caused plankton to thrive in a region of the Southern Ocean.The study published in Science confirms a longstanding hypothesis that wind-borne dust carried iron to the region of the globe north of Antarctica, driving plankton growth and eventually leading to the removal of carbon dioxide from the atmosphere.Plankton remove the greenhouse gas carbon dioxide (CO2) from the atmosphere during growth and transfer it to the deep ocean when their remains sink to the bottom. Iron fertilization has previously been suggested as a possible cause of the lower CO2 levels that occur during ice ages. These decreases in atmospheric CO2 are believed to have “amplified” the ice ages, making them much colder, with some scientists believing that there would have been no ice ages at all without the CO2 depletion.Iron fertilization has also been suggested as one way to draw down the rising levels of CO2 associated with the burning of fossil fuels. Improved understanding of the drivers of ocean carbon storage could lead to better predictions of how the rise in manmade carbon dioxide will affect climate in the coming years.The role of iron in storing carbon dioxide during ice ages was first proposed in 1990 by the late John Martin, an oceanographer at Moss Landing Marine Laboratories in California who made the landmark discovery that iron limits plankton growth in large regions of the modern ocean.Based on evidence that there was more dust in the atmosphere during the ice ages, Martin hypothesized that this increased dust supply to the Southern Ocean allowed plankton to grow more rapidly, sending more of their biomass into the deep ocean and removing CO2 from the atmosphere. Martin focused on the Southern Ocean because its surface waters contain the nutrients nitrogen and phosphorus in abundance, allowing plankton to be fertilized by iron without running low on these necessary nutrients.The research confirms Martin’s hypothesis, said Daniel Sigman, Princeton’s Dusenbury Professor of Geological and Geophysical Sciences, and a co-leader of the study. “I was an undergraduate when Martin published his ‘ice age iron hypothesis,'” he said. “I remember being captivated by it, as was everyone else at the time. But I also remember thinking that Martin would have to be the luckiest person in the world to pose such a simple, beautiful explanation for the ice age CO2 paradox and then turn out to be right about it.”Previous efforts to test Martin’s hypothesis established a strong correlation of cold climate, high dust and productivity in the Subantarctic region, a band of ocean encircling the globe between roughly 40 and 50 degrees south latitude that lies in the path of the winds that blow off South America, South Africa and Australia. However, it was not clear whether the productivity was due to iron fertilization or the northward shift of a zone of naturally occurring productivity that today lies to the south of the Subantarctic. This uncertainty was made more acute by the finding that ice age productivity was lower in the Antarctic Ocean, which lies south of the Subantarctic region.To settle the matter, the research groups of Sigman at Princeton and Gerald Haug and Tim Eglinton at ETH Zurich teamed up to use a new method developed at Princeton. …

For more info: Dust in the wind drove iron fertilization during ice age

All Top News — ScienceDaily

Dust in the wind drove iron fertilization during ice age

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close