Horticulture: Multiple commercial uses of wireless sensor networks outlined in report

Managing the quality and quantity of freshwater resources is one of the most serious environmental challenges of the 21st century. Global population growth and increasing urbanization have resulted in increased competition for water resources among domestic, industrial, and agricultural users. Challenged to find ways to manage irrigation needs while recognizing the limitations of freshwater resources, many commercial horticulture operations are showing increased interest in the use of wireless sensor networks (WSN) — -technology designed to both monitor and control irrigation events.A review published in HortTechnology highlights the recent advances in specific WSN technology and discusses implications for its use in commercial horticulture settings.”Previous studies have demonstrated the utility of sensor-controlled irrigation,” explained Matthew Chappell, lead author of the report. “The subsequent step in facilitating adoption of this technology has been the on-farm implementation of soil moisture-based irrigation hardware and software developed as part of the U.S. Department of Agriculture (USDA) Specialty Crops Research Initiative Project.” Chappell and colleagues at the University of Georgia’s Department of Horticulture reported on the implementation and use of these WSNs at three commercial nursery and greenhouse operations in Georgia.The report focused on the use of capacitance-based soil moisture sensors to both monitor and control irrigation events. “Since on-farm testing of these wireless sensor networks (WSNs) to monitor and control irrigation scheduling began in 2010, WSNs have been deployed in a diverse assortment of commercial horticulture operations,” the authors said. They said that improved software and hardware have resulted from the challenges and successes experienced by growers, and grower confidence in WSNs has subsequently improved.”Growers are using WSNs in a variety of ways to fit specific needs, resulting in multiple commercial applications,” Chappell noted. “Some growers use WSNs as fully functional irrigation controllers. Other growers use components of WSNs, specifically the web-based graphical user interface (GUI), to monitor grower-controlled irrigation schedules.””The case studies we documented exemplify the advancements that can be made in product development, deployment, and implementation when researchers work together with commercial growers,” said Chappell. He noted that the research project has resulted in successful WSN implementation at three commercial nurseries in Georgia, which now trust and rely on WSN data not only to monitor substrate moisture but also to control irrigation. …

Read more

Butterfly wings + carbon nanotubes = new ‘nanobiocomposite’ material

Aug. 28, 2013 — Leveraging the amazing natural properties of the Morpho butterfly’s wings, scientists have developed a nanobiocomposite material that shows promise for wearable electronic devices, highly sensitive light sensors and sustainable batteries. A report on the new hybrid material appears in the journal ACS Nano.Share This:Eijiro Miyako and colleagues explain that Morpho butterfly wings have natural properties that are beyond the capabilities of any current technology to reproduce artificially. In addition to being lightweight, thin and flexible, the butterfly’s wings absorb solar energy, shed water quickly and are self-cleaning. Miyako’s group had been working with tiny cylinders of carbon termed carbon nanotubes (CNTs), and became fascinated with CNTs’ unique electrical, mechanical, thermal and optical properties. Miyako’s team set out to marry the wings and nanotubes to produce an all-new hybrid material.They describe growing a honeycomb network of carbon nanotubes on Morpho butterfly wings, creating a composite material that could be activated with a laser. The resulting material heated up faster than the original components by themselves, exhibited high electrical conductivity and had the ability to copy DNA on its surface without absorbing it. “Our present study highlights the important progress that has been made toward the development of smart nanobiomaterials for various applications such as digital diagnosis, soft wearable electronic devices, photosensors, and photovoltaic cells,” the scientists state.Share this story on Facebook, Twitter, and Google:Other social bookmarking and sharing tools:|Story Source: The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length. For further information, please contact the source cited above. …

Read more

Wireless devices go battery-free with new communication technique

Aug. 13, 2013 — We might be one step closer to an Internet-of-things reality.University of Washington engineers have created a new wireless communication system that allows devices to interact with each other without relying on batteries or wires for power.The new communication technique, which the researchers call “ambient backscatter,” takes advantage of the TV and cellular transmissions that already surround us around the clock. Two devices communicate with each other by reflecting the existing signals to exchange information. The researchers built small, battery-free devices with antennas that can detect, harness and reflect a TV signal, which then is picked up by other similar devices.The technology could enable a network of devices and sensors to communicate with no power source or human attention needed.”We can repurpose wireless signals that are already around us into both a source of power and a communication medium,” said lead researcher Shyam Gollakota, a UW assistant professor of computer science and engineering. “It’s hopefully going to have applications in a number of areas including wearable computing, smart homes and self-sustaining sensor networks.”The researchers published their results at the Association for Computing Machinery’s Special Interest Group on Data Communication 2013 conference in Hong Kong, which begins Aug. 13. They have received the conference’s best-paper award for their research.”Our devices form a network out of thin air,” said co-author Joshua Smith, a UW associate professor of computer science and engineering and of electrical engineering. “You can reflect these signals slightly to create a Morse code of communication between battery-free devices.”Smart sensors could be built and placed permanently inside nearly any structure, then set to communicate with each other. For example, sensors placed in a bridge could monitor the health of the concrete and steel, then send an alert if one of the sensors picks up a hairline crack. The technology can also be used for communication — text messages and emails, for example — in wearable devices, without requiring battery consumption.The researchers tested the ambient backscatter technique with credit card-sized prototype devices placed within several feet of each other. …

Read more

Micro-machines for the human body: Researchers adapt microscopic technology for bionic body parts and other medical devices

Aug. 7, 2013 — Tiny sensors and motors are everywhere, telling your smartphone screen to rotate and your camera to focus. Now, a team of researchers at Tel Aviv University has found a way to print biocompatible components for these micro-machines, making them ideal for use in medical devices, like bionic arms.Microelectromechanical systems, better known as MEMS, are usually produced from silicon. The innovation of the TAU researchers — engineering doctoral candidates Leeya Engel and Jenny Shklovsky under the supervision of Prof. Yosi Shacham-Diamand of the School of Electrical Engineering and Slava Krylov of the School of Mechanical Engineering — is creating a novel micro-printing process that works a highly flexible and non-toxic organic polymer. The resulting MEMS components can be more comfortably and safely used in the human body and they expend less energy.A two-way streetAs their name suggests, MEMS bridge the worlds of electricity and mechanics. They have a variety of applications in consumer electronics, automobiles, and medicine. MEMS sensors, like the accelerometer that orients your smartphone screen vertically or horizontally, gather information from their surroundings by converting movement or chemical signals into electrical signals. MEMS actuators, which may focus your next smartphone’s camera, work in the other direction, executing commands by converting electrical signals into movement.Both types of MEMS depend on micro- and nano-sized components, such as membranes, either to measure or produce the necessary movement.For years, MEMS membranes, like other MEMS components, were primarily fabricated from silicon using a set of processes borrowed from the semiconductor industry. TAU’s new printing process, published in Microelectronic Engineering and presented at the AVS 59th International Symposium in Tampa, FL, yields rubbery, paper-thin membranes made of a particular kind of organic polymer. …

Read more

The temperature tastes just right

Aug. 7, 2013 — Call it the Goldilocks Principle — animals can survive and reproduce only if the temperature is just right. Too hot and they will overheat. Too cold and they will freeze.To stay in their comfort zone, animals have evolved very sensitive temperature sensors to detect the relatively narrow margin in which they can survive. Until recently, scientists knew little about how these sensors operated.Now, a team of Brandeis University scientists has discovered a previously unknown molecular temperature sensor in fruit flies belonging to a protein family responsible for sensing tastes and smells. These types of sensors are present in disease-spreading insects like mosquitoes and tsetse flies and may help scientists better understand how insects target warm-blooded prey — like humans — and spread disease.The discovery is published in today’s advance online edition of the journal Nature.Biting insects, such as mosquitoes, are attracted to carbon dioxide and heat. Notice how mosquitoes always seem to bite where there is the most blood? That is because those areas are the warmest, says Paul Garrity, a professor of biology in the National Center for Behavioral Genomics at Brandeis who co-authored the paper.”If you can find a mosquito’s temperature receptor, you can potentially produce a more effective repellent or trap,” Garrity says. “The discovery of this new temperature receptor in the fruit fly gives scientists an idea of where to look for similar receptors in the mosquito and in other insects.”Professor of Biology Leslie Griffith and Associate Professor of Biochemistry Douglas Theobald assisted with the research, which was led by postdoctoral fellows Lina Ni and Peter Bronk.The newly discovered sensor belongs to a family of proteins, called gustatory receptors, that have been studied for over a decade but never linked to thermosensation, Garrity says. In previous studies, other gustatory receptors have been found to allow insects to smell carbon dioxide and to taste sugar and bitter chemicals like caffeine.But in fruit flies, one type of gustatory receptor senses heat rather than smell or taste. …

Read more

Whispering light hears liquids talk

June 7, 2013 — Ever been to a whispering gallery — a quiet, circular space underneath an old cathedral dome that captures and amplifies sounds as quiet as a whisper? Researchers at the University of Illinois at Urbana-Champaign are applying similar principles in the development optomechanical sensors that will help unlock vibrational secrets of chemical and biological samples at the nanoscale.”Optomechanics is an area of research in which extremely minute forces exerted by light (for example: radiation pressure, gradient force, electrostriction) are used to generate and control high-frequency mechanical vibrations of microscale and nanoscale devices,” explained Gaurav Bahl, an assistant professor of mechanical science and engineering at Illinois.In glass microcavities that function as optical whispering galleries, according to Bahl, these miniscule optical forces can be enhanced by many orders-of-magnitude, which enables ‘conversations’ between light (photons) and vibration (phonons). These devices are of interest to condensed matter physics as the strong phonon-photon coupling enables experiments targeting quantum information storage (i.e. qubits), quantum-mechanical ground state (i.e. optomechanical cooling), and ultra-sensitive force measurements past the standard quantum limit.Researchers developed a hollow optomechanical device made of fused silica glass, through which fluids and gases could flow. Employing a unique optomechanical interaction called Brillouin Optomechanics (described previously in Bahl et al, Nature Communications 2:403, 2011; Bahl et al, Nature Physics, vol.8, no.3, 2012), the researchers achieved the optical excitation of mechanical whispering-gallery modes at a phenomenal range of frequencies spanning from 2 MHz to 11,000 MHz.”These mechanical vibrations can, in turn, ‘talk’ to liquids within the hollow device and provide optical readout of the mechanical properties,” said Bahl, who is first author of the paper, “Brillouin cavity optomechanics with microfluidic devices,” published this week in Nature Communications.By confining various liquids inside a hollow microfluidic optomechanical (μFOM) resonator, researchers built the first-ever bridge between optomechanics and microfluidics.”We found that the optomechanical interaction in the μFOM device is dependent on the fluid contained within,” Bahl said. “These results are a step towards novel experiments probing optomechanics on non-solid phases of matter. In particular, the high frequency, high quality-factor mechanical vibrations demonstrated in this work may enable strongly localized, high-sensitivity, optomechanical interaction with chemical and biological samples.”Potential uses for this technology include optomechanical biosensors that can measure various optical and mechanical properties of a single cell, ultra-high-frequency analysis of fluids, and the optical control of fluid flow.

Read more

Wi-Fi signals enable gesture recognition throughout entire home

June 4, 2013 — Forget to turn off the lights before leaving the apartment? No problem. Just raise your hand, finger-swipe the air, and your lights will power down. Want to change the song playing on your music system in the other room? Move your hand to the right and flip through the songs.University of Washington computer scientists have developed gesture-recognition technology that brings this a step closer to reality. Researchers have shown it’s possible to leverage Wi-Fi signals around us to detect specific movements without needing sensors on the human body or cameras.By using an adapted Wi-Fi router and a few wireless devices in the living room, users could control their electronics and household appliances from any room in the home with a simple gesture.”This is repurposing wireless signals that already exist in new ways,” said lead researcher Shyam Gollakota, a UW assistant professor of computer science and engineering. “You can actually use wireless for gesture recognition without needing to deploy more sensors.”The UW research team that includes Shwetak Patel, an assistant professor of computer science and engineering and of electrical engineering and his lab, published their findings online this week. This technology, which they call “WiSee,” has been submitted to The 19th Annual International Conference on Mobile Computing and Networking.The concept is similar to Xbox Kinect — a commercial product that uses cameras to recognize gestures — but the UW technology is simpler, cheaper and doesn’t require users to be in the same room as the device they want to control. That’s because Wi-Fi signals can travel through walls and aren’t bound by line-of-sight or sound restrictions.The UW researchers built a “smart” receiver device that essentially listens to all of the wireless transmissions coming from devices throughout a home, including smartphones, laptops and tablets. A standard Wi-Fi router could be adapted to function as a receiver.When a person moves, there is a slight change in the frequency of the wireless signal. …

Read more

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close