Can vitamin A turn back the clock on breast cancer?

A derivative of vitamin A, known as retinoic acid, found abundantly in sweet potato and carrots, helps turn pre-cancer cells back to normal healthy breast cells, according to research published this month in the International Journal of Oncology. The research could help explain why some clinical studies have been unable to see a benefit of vitamin A on cancer: the vitamin doesn’t appear to change the course of full-blown cancer, only pre-cancerous cells, and only works at a very narrow dose.Because cells undergo many changes before they become fully aggressive and metastatic, Sandra V. Fernandez, Ph.D., Assistant Research Professor of Medical Oncology at Thomas Jefferson University, and colleagues, used a model of breast cancer progression composed of four types of cells each one representing a different stage of breast cancer: normal, pre-cancerous, cancerous and a fully aggressive model.When the researchers exposed the four breast cell types to different concentrations of retinoic acid – one of the chemicals that the body converts vitamin A into – they noticed a strong change in the pre-cancerous cells. Not only did the pre-cancerous cells begin to look more like normal cells in terms of their shape, they also changed their genetic signature back to normal. Dr. Fernandez’s pre-cancerous cells had 443 genes that were either up or downregulated on their way to becoming cancerous. All of these genes returned to normal levels after treatment with retinoic acid. “It looks like retinoic acid exerts effects on cancer cells in part via the modulation of the epigenome,” says Fernandez.“We were able to see this effect of retinoic acid because we were looking at four distinct stages of breast cancer,” says Dr. Fernandez. “It will be interesting to see if these results can be applied to patients.”Interestingly, the cells that were considered fully cancerous did not respond at all to retinoic acid, suggesting that there may be a small window of opportunity for retinoic acid to be helpful in preventing cancer progression. …

Read more

Oddest couple share 250 million year old burrow

June 22, 2013 — Scientists from South Africa, Australia and France have discovered a world first association while scanning a 250 million year old fossilised burrow from the Karoo Basin of South Africa.The burrow revealed two unrelated vertebrate animals nestled together and fossilised after being trapped by a flash flood event. Facing harsh climatic conditions subsequent to the Permo-Triassic (P-T) mass extinction, the amphibian Broomistega and the mammal forerunner Thrinaxodon cohabited in a burrow.Scanning shows that the amphibian, which was suffering from broken ribs, crawled into a sleeping mammal’s shelter for protection. This research suggests that short periods of dormancy, called aestivation, in addition to burrowing behaviour, may have been a crucial adaptation that allowed mammal ancestors to survive the P-T extinction.The international team of scientists was led by Dr Vincent Fernandez from Wits University, South Africa and the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. The other authors from Wits University include Prof. Bruce Rubidge (Director of the newly formed Palaeosciences Centre of Excellence at Wits), Dr Fernando Abdala and Dr Kristian Carlson. Other authors include Dr Della Collins Cook (Indiana University); Dr Adam Yates (Museum of Central Australia) and Dr. Paul Tafforeau (ESRF).After many impressive results obtained on fossils, synchrotron imaging has led to revived interest in the studies of the numerous fossilised burrows discovered in the Karoo Basin of South Africa and dated to 250 million years ago. The first attempt to investigate one of these burrow-casts surprisingly revealed a world-first association of two unrelated animals.The fossil was recovered from sedimentary rock strata in the Karoo Basin. It dates from 250 million years ago, at the beginning of the Triassic Period. At that time, the ecosystem was recovering from the Permo-Triassic mass extinction that wiped out most of life on Earth. …

Read more

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close