A warmer planetary haven around cool stars, as ice warms rather than cools

July 19, 2013 — In a bit of cosmic irony, planets orbiting cooler stars may be more likely to remain ice-free than planets around hotter stars. This is due to the interaction of a star’s light with ice and snow on the planet’s surface.Stars emit different types of light. Hotter stars emit high-energy visible and ultraviolet light, and cooler stars give off infrared and near-infrared light, which has a much lower energy.It seems logical that the warmth of terrestrial or rocky planets should depend on the amount of light they get from their stars, all other things being equal. But new climate model research led by Aomawa Shields, a doctoral student in the University of Washington astronomy department, has added a surprising new twist to the story: Planets orbiting cool stars actually may be much warmer and less icy than their counterparts orbiting much hotter stars, even though they receive the same amount of light.That’s because the ice absorbs much of the longer wavelength, near-infrared light predominantly emitted by these cooler stars. This is counter to what we experience on Earth, where ice and snow strongly reflect the visible light emitted by the Sun.Around a cooler (M-dwarf) star, the more light the ice absorbs, the warmer the planet gets. The planet’s atmospheric greenhouse gases also absorb this near-infrared light, compounding the warming effect.The researchers found that planets orbiting cooler stars, given similar amounts of light as those orbiting hotter stars, are therefore less likely to experience so-called “snowball states,” icing over from pole to equator.However, around a hotter star such as an F-dwarf, the star’s visible and ultraviolet light is reflected by planetary ice and snow in a process called ice-albedo feedback. The more light the ice reflects, the cooler the planet gets.This feedback can be so effective at cooling that terrestrial planets around hotter stars appear to be more susceptible than other planets to entering snowball states. That’s not necessarily a bad thing, in the scheme of time — Earth itself is believed to have experienced several snowball states during the course of its 4.6 billion year history.Shields and co-authors found that this interaction of starlight with a planet’s surface ice is less pronounced near the outer edge of the habitable zone, where carbon dioxide is expected to build up as temperatures decrease. The habitable zone is the swath of space around a star that’s just right to allow an orbiting planet’s surface water to be in liquid form, thus giving life a chance.That is the case because planets at that zone’s outer edge would likely have a thick atmosphere of carbon dioxide or other greenhouse gases, which blocks the absorption of radiation at the surface, causing the planet to lose any additional warming advantage due to the ice.The researchers’ findings are documented in a paper published in the August issue of the journal Astrobiology, and published online ahead of print July 15.Shields said that astronomers hunting for possible life will prioritize planets less vulnerable to that snowball state — that is, planets other than those orbiting hotter stars. But that doesn’t mean they will rule out the cooler planets.”The last snowball episode on Earth has been linked to the explosion of multicellular life on our planet,” Shields said. …

Read more

How early Earth kept warm enough to support life

July 9, 2013 — Solving the “faint young sun paradox” — explaining how early Earth was warm and habitable for life beginning more than 3 billion years ago even though the sun was 20 percent dimmer than today — may not be as difficult as believed, says a new University of Colorado Boulder study.In fact, two CU-Boulder researchers say all that may have been required to sustain liquid water and primitive life on Earth during the Archean eon 2.8 billion years ago were reasonable atmospheric carbon dioxide amounts believed to be present at the time and perhaps a dash of methane. The key to the solution was the use of sophisticated three-dimensional climate models that were run for thousands of hours on CU’s Janus supercomputer, rather than crude, one-dimensional models used by almost all scientists attempting to solve the paradox, said doctoral student Eric Wolf, lead study author.”It’s really not that hard in a three-dimensional climate model to get average surface temperatures during the Archean that are in fact moderate,” said Wolf, a doctoral student in CU-Boulder’s atmospheric and oceanic sciences department. “Our models indicate the Archean climate may have been similar to our present climate, perhaps a little cooler. Even if Earth was sliding in and out of glacial periods back then, there still would have been a large amount of liquid water in equatorial regions, just like today.”Evolutionary biologists believe life arose on Earth as simple cells roughly 3.5 billion years ago, about a billion years after the planet is thought to have formed. Scientists have speculated the first life may have evolved in shallow tide pools, freshwater ponds, freshwater or deep-sea hydrothermal vents, or even arrived on objects from space.A cover article by Wolf and CU-Boulder Professor Brian Toon on the topic appears in the July issue of Astrobiology.Scientists have been trying to solve the faint young sun paradox since 1972, when Cornell University scientist Carl Sagan — Toon’s doctoral adviser at the time — and colleague George Mullen broached the subject. Since then there have been many studies using 1-D climate models to try to solve the faint young sun paradox — with results ranging from a hot, tropical Earth to a “snowball Earth” with runaway glaciation — none of which have conclusively resolved the problem.”In our opinion, the one-dimensional models of early Earth created by scientists to solve this paradox are too simple — they are essentially taking the early Earth and reducing it to a single column atmospheric profile,” said Toon. “One-dimensional models are simply too crude to give an accurate picture.”Wolf and Toon used a general circulation model known as the Community Atmospheric Model version 3.0 developed by the National Center for Atmospheric Research in Boulder and which contains 3-D atmosphere, ocean, land, cloud and sea ice components. The two researchers also “tuned up” the model with a sophisticated radiative transfer component that allowed for the absorption, emission and scattering of solar energy and an accurate calculation of the greenhouse effect for the unusual atmosphere of early Earth, where there was no oxygen and no ozone, but lots of CO2 and possibly methane.The simplest solution to the faint sun paradox, which duplicates Earth’s present climate, involves maintaining roughly 20,000 parts per million of the greenhouse gas CO2 and 1,000 ppm of methane in the ancient atmosphere some 2.8 billion years ago, said Wolf. While that may seem like a lot compared to today’s 400 ppm of CO2 in the atmosphere, geological studies of ancient soil samples support the idea that CO2 likely could have been that high during that time period. Methane is considered to be at least 20 times more powerful as a greenhouse gas than CO2 and could have played a significant role in warming the early Earth as well, said the CU researchers.There are other reasons to believe that CO2 was much higher in the Archean, said Toon, who along with Wolf is associated with CU’s Laboratory for Atmospheric and Space Physics. …

Read more

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close