Most distant gravitational lens helps weigh galaxies

Oct. 17, 2013 — An international team of astronomers has found the most distant gravitational lens yet — a galaxy that, as predicted by Albert Einstein’s general theory of relativity, deflects and intensifies the light of an even more distant object. The discovery provides a rare opportunity to directly measure the mass of a distant galaxy. But it also poses a mystery: lenses of this kind should be exceedingly rare. Given this and other recent finds, astronomers either have been phenomenally lucky — or, more likely, they have underestimated substantially the number of small, very young galaxies in the early Universe.Light is affected by gravity, and light passing a distant galaxy will be deflected as a result. Since the first find in 1979, numerous such gravitational lenses have been discovered. In addition to providing tests of Einstein’s theory of general relativity, gravitational lenses have proved to be valuable tools. Notably, one can determine the mass of the matter that is bending the light — including the mass of the still-enigmatic dark matter, which does not emit or absorb light and can only be detected via its gravitational effects. The lens also magnifies the background light source, acting as a “natural telescope” that allows astronomers a more detailed look at distant galaxies than is normally possible.Gravitational lenses consist of two objects: one is further away and supplies the light, and the other, the lensing mass or gravitational lens, which sits between us and the distant light source, and whose gravity deflects the light. When the observer, the lens, and the distant light source are precisely aligned, the observer sees an Einstein ring: a perfect circle of light that is the projected and greatly magnified image of the distant light source.Now, astronomers have found the most distant gravitational lens yet. …

Leggi il seguito

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close