Harnessing everyday motion to power mobile devices

Harnessing everyday motion to power mobile devices

Imagine powering your cell phone by simply walking around your office or rubbing it with the palm of your hand. Rather than plugging it into the wall, you become the power source. Scientists were recently working on a miniature generator based on an energy phenomenon called the piezoelectric effect, which is electricity resulting from pressure. To their surprise, it produced more power than expected.

via All Top News — ScienceDaily:

Imagine powering your cell phone by simply walking around your office or rubbing it with the palm of your hand. Rather than plugging it into the wall, you become the power source. Researchers at the 247th National Meeting & Exposition of the American Chemical Society (ACS) presented these commercial possibilities and a unique vision for green energy.The meeting, attended by thousands of scientists, features more than 10,000 reports on new advances in science and other topics. It is being held at the Dallas Convention Center and area hotels through Thursday.Zhong Lin Wang, Ph.D., and his team, including graduate student Long Lin who presented the work, have set out to transform the way we look at mechanical energy. Conventional energy sources have so far relied on century-old science that requires scattered, costly power plants and a grid to distribute electricity far and wide.”Today, coal, natural gas and nuclear power plants all use turbine-engine driven, electromagnetic-induction generators,” Wang explained. “For a hundred years, this has been the only way to convert mechanical energy into electricity.”But a couple of years ago, Wang’s team at the Georgia Institute of Technology was working on a miniature generator based on an energy phenomenon called the piezoelectric effect, which is electricity resulting from pressure. But to their surprise, it produced more power than expected. They investigated what caused the spike and discovered that two polymer surfaces in the device had rubbed together, producing what’s called a triboelectric effect — essentially what most of us know as static electricity.Building on that fortuitous discovery, Wang then developed the first triboelectric nanogenerator, or “TENG.” He paired two sheets of different materials together — one donates electrons, and the other accepts them. When the sheets touch, electrons flow from one to the other. When the sheets are separated, a voltage develops between them.Since his lab’s first publication on TENG in 2012, they have since boosted the power output density by a factor of 100,000, with the output power density reaching 300 Watts per square meter. …

For more info: Harnessing everyday motion to power mobile devices

All Top News — ScienceDaily

Harnessing everyday motion to power mobile devices

Utilizzando il sito, accetti l'utilizzo dei cookie da parte nostra. maggiori informazioni

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close